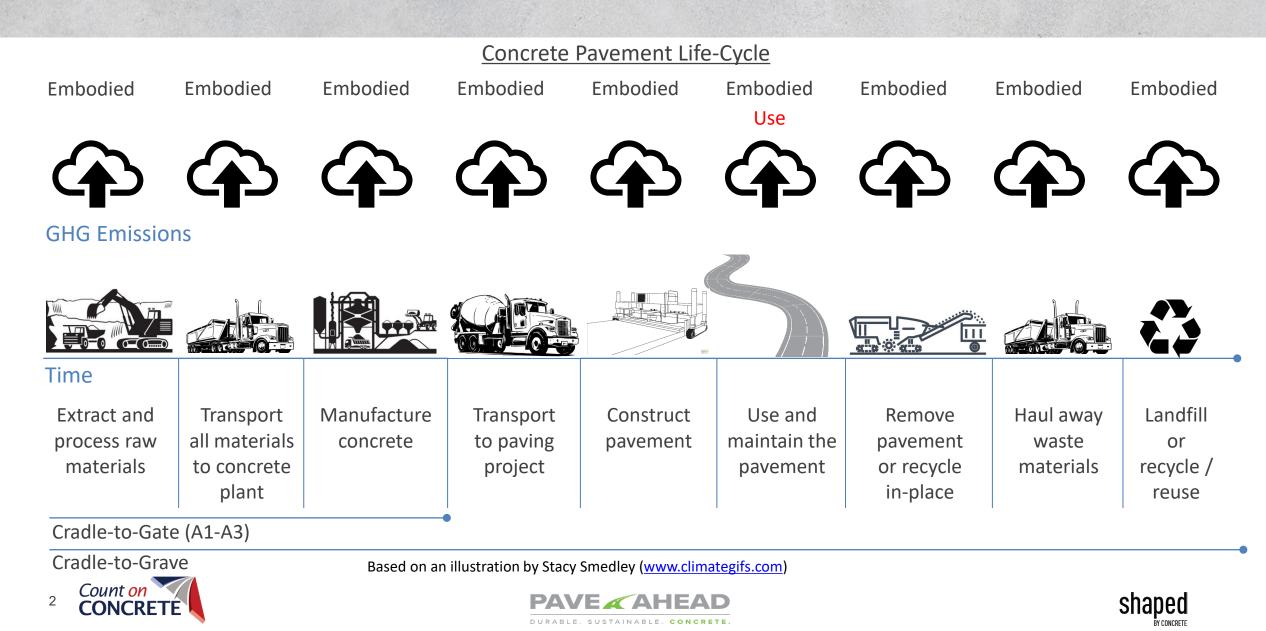
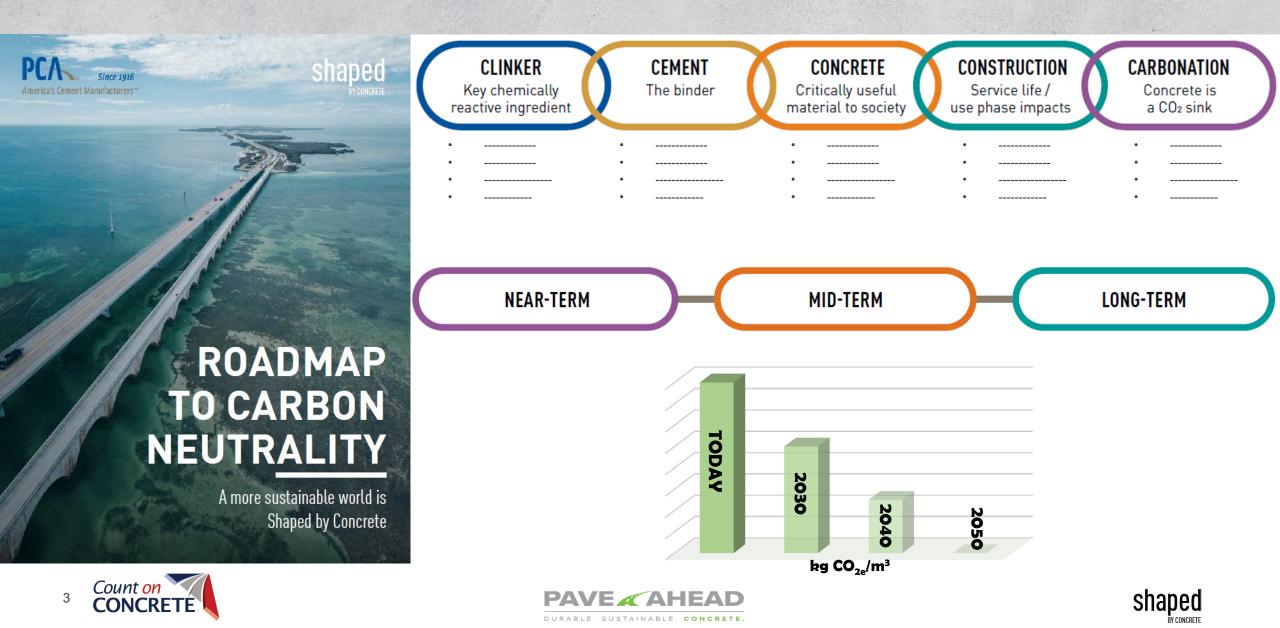
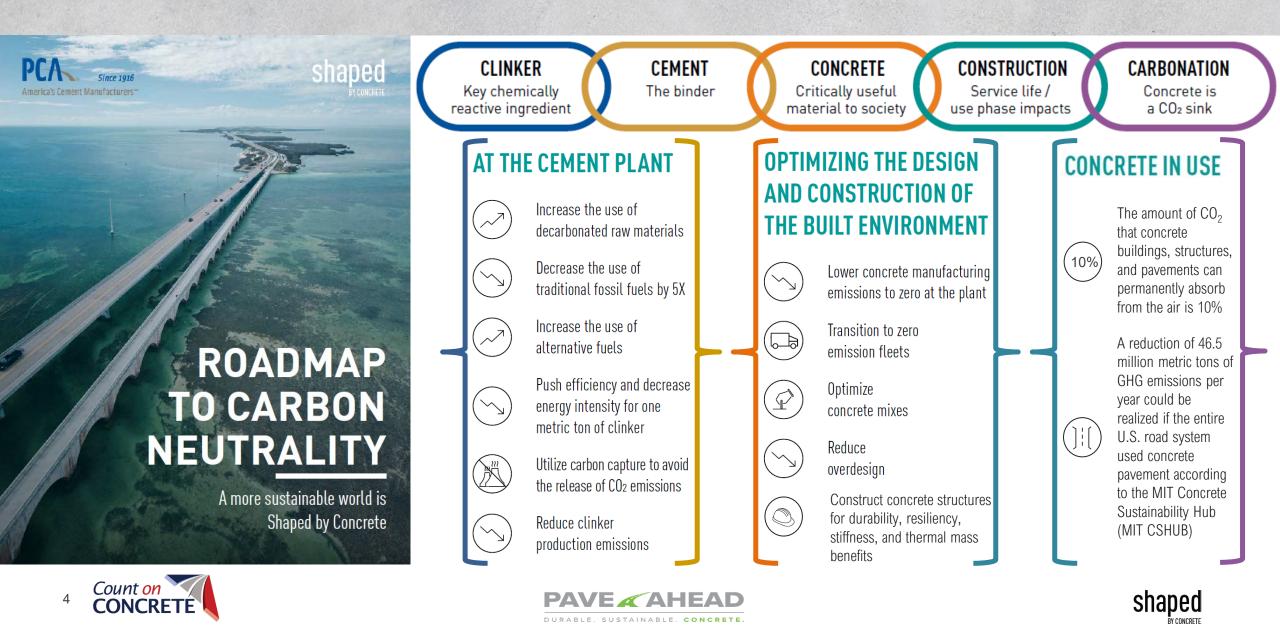
SH13 CO Overlay Picture Source: ACPA

CDOT Industry Stakeholder EPD Workshop


Concrete Industry Perspective




Embodied and Operational (Use) GHG Emissions

Roadmap to Carbon Neutrality: Cement & Concrete

Roadmap to Carbon Neutrality: Cement & Concrete

Reducing Concrete's Embodied Carbon Emissions (In-Use to Near-Term)

Optimized Pavement Designs & Rehabilitations

- Use of Pavement ME and other innovative methods (e.g., short or long [jointless] slab designs, concrete o/I, FDR).
- Use of Type IL Cement
 - Portland-limestone cement containing more than 5% but less than or equal to 15% by mass of limestone.
- Alternative & Blended Cements / Clinkers
 - The use of low CO_2 clinker and blended cements.
- Supplementary Cementitious Materials (SCMs)
 - Fly Ash, Slag, other pozzolans to reduce the amount of cement in the concrete.
- Aggregate Optimization
 - Use well graded mixes to reduce paste and improve workability & durability. On-site concrete recycling.
- Enhanced Carbonation
 - Technologies to use CO_2 emissions (e.g., injected CO_2).



Optimizing concrete mixes using these tools allows the Industry to create low carbon ready-mix concrete

Reducing Concrete's Embodied Carbon Emissions (In-Use to Near-Term)

Ensure Good Quality Control and Assurance

Optimize Concrete Designs & Mixtures

Specify Innovative Cements

Specify Supplementary Cementitious Materials

CO Don't Limit Ingredients

• Set Targets for Carbon Footprint

(**co**₂) Sequester Carbon Dioxide in Concrete

The embodied CO₂ footprint of a typical concrete paving mixture today is as much as 40 percent lower than just a few decades ago.

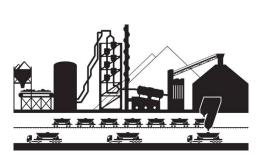
Reducing Concrete's Embodied Carbon Emissions (Mid- to Long-Term)

Increase Use of Alternative Fuels at Cement Plants

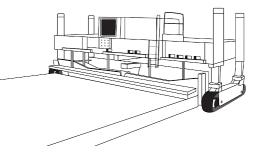
- Utilize transformative fuels and technologies: hydrogen, plasma heating, oxyfuel/oxy-calcination, electric calcination, agriculture and sorted disposed waste...
- Zero or Low Emissions During Cement and Concrete Manufacturing and Transportation
 - Move to renewable energy sources and alternative fuels (e.g., hydrogen) or electric power for transportation.
- Development of New Cements
 - Use low CO₂ clinker and blended cements, new binders, etc.
- Carbon Capture Utilization & Storage
 - Further develop technologies to capture, store, and use CO₂ emissions (e.g., underground storage, enhanced carbonation cement and aggregates, etc.).

Optimizing concrete mixes using these tools allows the Industry to create low carbon ready-mix concrete

Public Agency Collaboration: Key Policy Levers


- 🍯 - Research, Development & Innovation	Market Acceptance
🔚 Regulations, Permitting & Guidance	Community Acceptance
Financial Incentives & Support	Cradle-to-Cradle Life Cycle-Based Procurement
Performance-Based Material Standards	Low-Carbon Infrastructure
Market-Based Carbon Pricing	Level Playing Field

Industry Partnering: Working Together to Meet Sustainability Goals

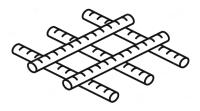


Cement Suppliers

Precast Suppliers

Equipment Manufacturers

Concrete Contractors


Aggregate Suppliers

Concrete Producer

Partners

Truck Manufacturers

Steel Suppliers

Admíxture / Addítíve Suppliers

°°o

Concrete Materials

Transparency Initiatives

Concrete Industry EPD Process

- 1. Submitting Company Selects a Program Operator.
- 2. Choose Product and Related Product Category Rule (PCR) and Gather Data per PCR.
- 3. Conduct Life-Cycle Assessment (LCA) by In-House Staff or LCA Consultant.
- 4. Conduct Independent Review of LCA.
- 5. Develop Draft EPD by In-House Staff or LCA Consultant.
- 6. Submit the LCA Report and Draft EPD to Program Operator for Initial Verification.
- 7. Program Operator Engages Independent Verifier Who Reviews the LCA Report and Draft EPD.
- 8. Program Operator Certifies EPD for Submitting Company.

Common EPD Program Operators for Concrete

Concrete Product Category Rule (PCR) – Revision History

Version	Date issued
Version 1 (published by Carbon Leadership Forum)	November 2012
Version 1.1 (published by Carbon Leadership Forum)	December 2013
Version 2 (published by NSF International)	February 2019
Version 2.1 (published by NSF International)	August 2021 Valid through February 22, 2024

Version 2.x (published by NSF International)

August 2022(?) Consideration of Mobile Mixers

Concrete PCR Revisions: Consideration of Mobile Batch Plants

- PCR Committee recently voted to include a one-year deviation:
 - Informative annex to the PCR;
 - Allows for data collection and analysis of data from portable mixing equipment;
 - Data would be basis for paving project EPDs using mobile batch plants.
- Committee will evaluate need to add language specific to paving vs. building mobile batch plant impacts.
 - Subcommittee could be assigned and propose expanded language, if necessary.
- Roller Compacted Concrete Paving Industry
 - Seeking clarification whether deviation is applicable to continuous (pugmill) mixers.

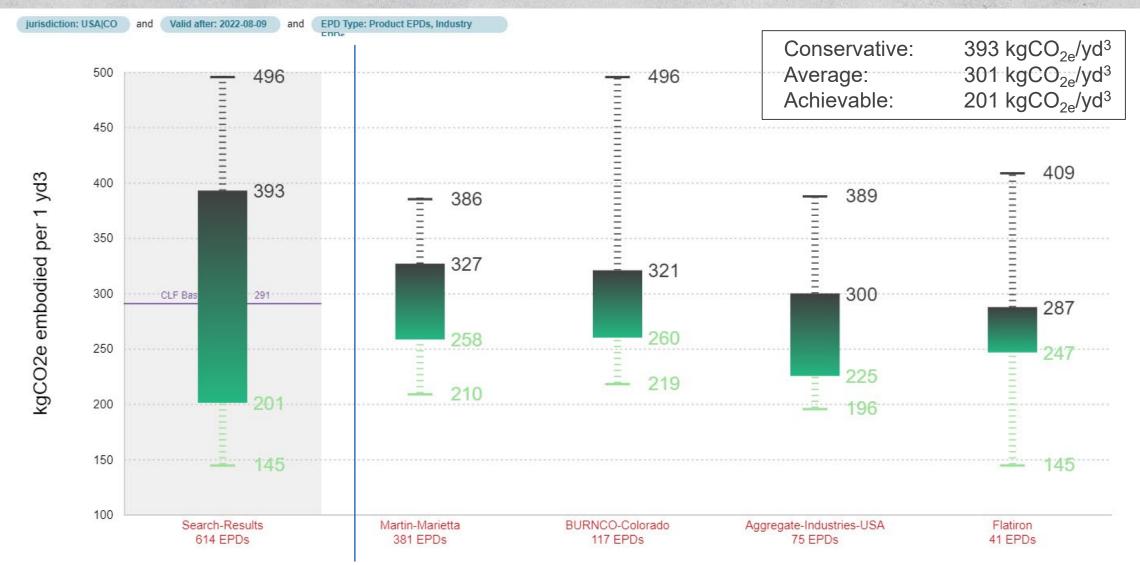
Concrete Environmental Product Declarations

mixed concrete, meeting the following p ACI 211: Standard Practice for Selectin	ation uct Declaration (EPD) reports the impacts for one cut			
mixed concrete, meeting the following p ACI 211: Standard Practice for Selectin				
		sic yard of rea	xty-	
ACI 318: Building Code Requirements ASTM C94 Standard Specification for F CSI Masterformat Division 03-30-00: C UNSPSC Code 30111500: Ready Mix	Ready-Mixed Concrete.	increte.		
COMPANY	Environmental Impacts			
Hanson Aggregates, New York 5125 NY-28, Middleville, NY 13406	Declared Product: 2140001 - Rochester Compressive Sterecth: 4500 pai at 20 days			
PLANT	Declared Unit:			
Rochester	1 yd3 of ready-mix concrete		10	
1535 Scottsville Road Rochester, NY 14623	Global Warning Potential	kg CO2e	251.14	326
	Ozone Depletion	ag cricite	7.525-	9.5
PROGRAM OPERATOR	kolfester	10.5024	- 20-	-8
ASTM International 100 Barr Harbor Drive	Extrachization	bg Ne	0.25	0.
West Conshohocken, PA 19428	SFP (Smog)	kg Ole	12.68	58
	Abiotic depletion potential for fossil resources	MUNCY	474.14	420
DATE OF ISSUE	Abiotic depletion potential for non-fossil mineral resources	kg Stre	1.506-	1.9
9/28/2021	Product Components:			
PERIOD OF VALIDITY Avault 4th 2025	natural aggregate (ASTM C23), portland limestone cement C1602), administre (ASTM C604), administre (ASTM C200)	(ASTM 595), ba	ich water (45Th
August 401, 2020				_
for Concrete; NSF	struction-Environmental Declaration of Building Products: s International, February 2019 serves as a subcategory PCR	erves as the o	ore PCR	
	-category PCR review was conducted by t ciona@industrial-ecology.com) - Industrial Ecology Const			
	and data assorting to ISO 21692-2017 and ISO 14025-20		-	
				34
Inite party vention: Thomas P. Or	oria, PhD. (<u>Lobota Bindustrial-ecology.com</u>) - Industrial Eco	logy consultat	-13	-
	Por additional explanatory material: sentative: Craig Green (Craig Green)@LehighHanson.com) Developer: Athena Sustainable Materials Institute			
Disclaimer: EPDS are comparable only if they con information modules and are ba	rply with this document, use the same sub-category PCR where a sed on equivalent scenarios with respect to the context of construc	oplicable, include fon works.	all releva	4
Cement accounts for as much as 95% of the impo	cts of the concrete mixes included in this EPO and thus manufact, could result in variation of as much as 47.5%	rer specific cerr	ent impact	•

- Over 38,000+^{*} product specific EPDs have been published by concrete producers since 2013 in <u>U.S.</u> and <u>Canada</u> (~40,000+^{*} globally)
 - Largest number published by any industry
 - Concrete GWP Values (<u>from EC3 Tool</u>):
 - Conservative (Baseline set @ 80th percentile): 366 kgCO_{2e}/yd³
 - Average ("Typical" @ Arithmetic Mean & Std Dev): $302 \text{ kgCO}_{2e}/\text{yd}^3 \pm 27.5\%$
 - Achievable ("Low-Carbon" set @ 20th percentile): 234 kgCO_{2e}/yd³

*Based on Embodied Carbon in Construction Calculator (EC3) Tool Published by Building Transparency which is very comprehensive but not exhaustive.

Colorado Concrete EPDs


- Currently 614^{*} concrete EPDs Published for CO
 - Concrete GWP Values (from EC3 Tool):
 - Conservative (Baseline set @ 80th percentile): 393 kgCO_{2e}/yd³
 - Average ("Typical" @ Arithmetic Mean & Std Dev): $301 \text{ kgCO}_{2e}/\text{yd}^3 \pm 39.5\%$
 - Achievable ("Low-Carbon" set @ 20th percentile): 201 kgCO_{2e}/yd³

*based on Embodied Carbon in Construction Calculator (EC3) Tool Published by Building Transparency which is very comprehensive but not exhaustive.

Colorado Concrete EPDs

Industry Wide Environmental Product Declaration

(((**Environmental** Product Declaration NRMCA MEMBER INDUSTRY-AVERAGE EPD FOR READY MIXED CONCRETE **NSF**. duct Declaratio

<u>https://www.nrmca.org/wp-</u> content/uploads/2020/02/NRMCA_EP D10294.pdf

- Ready Mixed Concrete Industry Wide EPD (v3.2) Jan 2022 Nov 2024
- From NRMCA Member Data (100+ Companies & ~2,000 Plants)
- Concrete GWP Values from IW EPD (calculated at ↑strength & ↓SCM ranges):

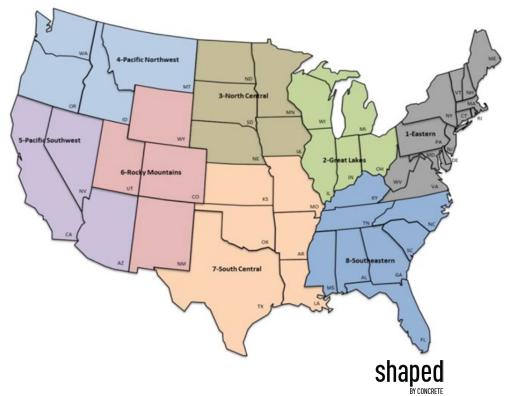
	Industry Average EPD (Published January 3rd, 2022)											
28-day f'c, psi	Minimum	Maximum	0% FA/SL	20% FA	30% FA	40% FA	30% SL	40% SL	50% SL	50% FA/SL		
	Conventional Concrete GWP (per yd ³)											
0 - 2,500	136.6	213.7	213.7	184.7	169.1	152.6	168.0	152.8	137.5	136.6		
2,501 - 3,000	150.7	238.1	238.1	205.2	187.4	168.8	186.1	168.9	151.7	150.7		
3, 001 - 4,000	182.5	293.3	293.3	251.7	229.1	205.5	227.5	205.6	183.7	182.5		
4,001 - 5,000	220.3	358.5	358.5	306.6	278.6	249.0	276.5	249.2	221.8	220.3		
5,001 - 6,000	231.5	377.4	377.4	322.6	293.0	261.7	290.8	262.0	233.1	231.5		
6,001 - 8,000	266.9	438.9	438.9	374.4	339.5	302.6	336.9	302.9	268.9	266.9		
			Lightw	eight Aggreg	ate Concrete	GWP (per yd	³)					
0 - 3,000	303.0	426.4	426.4	367.2	335.2	360.0	305.7	340.8	303.0	321.6		
3,001 -4,000	343.6	491.2	491.2	424.0	385.0	414.7	348.2	390.3	343.6	362.5		
4,001 - 5,000	373.6	547.6	547.6	468.5	422.4	455.3	380.1	427.5	373.6	394.4		

Supplementary Cementitious Material (SCM) Ranges:

0-19% Fly Ash and/or Slag, 20-29% Fly Ash, 30-39% Fly Ash, 40-49% Fly Ash, 30-49% Slag, 40-39% Slag, ≥ 50% Slag, ≥ 20% Fly Ash and ≥ 30% Slag

• NRMCA members decreased their carbon footprint by 21% in 7 years

NRMCA Member Regional LCA Benchmark Report


DURABLE, SUSTAINABLE, CONCRETE

	28-Day Compressive Strength, psi										
Region	2,500	3,000	4,000	5,000	6,000	8,000	3,000LW	4,000LW	5,000LW		
	Global Warming Potential (per yd ³)										
National	183.5	200.6	235.6	279.0	294.6	341.3	376.4	412.9	449.8		
Eastern	183.3	201.5	240.2	289.0	305.3	360.5	395.4	437.9	480.1		
Great Lakes Midwest	177.6	194.8	231.4	277.6	293.1	345.3	381.6	421.6	461.3		
North Central	184.2	201.9	238.8	284.7	301.5	351.8	372.1	410.7	451.7		
Pacific Northwest	180.0	199.8	242.0	295.2	311.9	372.7	396.2	439.7	483.4		
Pacific Southwest	196.5	213.5	247.3	288.9	306.4	349.0	382.2	417.5	453.9		
Rocky Mountains	177.5	194.6	229.8	273.4	289.6	336.7	369.8	406.5	443.5		
South Central	172.4	187.7	218.6	257.2	272.2	312.8	357.7	390.2	424.5		
South Eastern	188.9	204.6	236.5	275.5	292.1	332.2	365.6	398.7	429.4		

le B1-NRMCA U.S <mark>. National</mark> Benchmark Mix Designs (per cubic yard)										
								3000	4000	5000
Compressive Strength	psi	2500	3000	4000	5000	6000	8000	LW	LW	LW
Portland Cement	lbs	354	394	475	576	610	719	394	475	556
Fly Ash	lbs	62	69	83	101	107	126	69	83	97
Slag Cement	lbs	17	19	23	28	30	35	19	23	27
Mixing Water	lbs	305	305	305	315	341	341	308	308	308
Crushed Coarse Aggregate	lbs	1,126	1,115	1,083	1,029	1,061	1,018	0	0	0
Natural Coarse Aggregate	lbs	553	547	531	505	521	499	0	0	0
Crushed Fine Aggregate	lbs	169	167	162	154	159	152	161	149	136
Natural Fine Aggregate	lbs	1,282	1,270	1,233	1,171	1,208	1,159	1,225	1,130	1,035
Man.Lightweight Aggregate	lbs	0	0	0	0	0	0	980	990	1,000
Air %	%	6%	6%	6%	6%	6%	0	6%	6%	2%
Air Entraining Admixture	oz	1	1	1	1	1	1	1	1	0
Plasticizer & Superplasticizer	oz	3	3	3	7	3	3	3	7	7
Set Accelerator	oz	25	20	15	10	25	20	15	10	10
Total Weight	lbs	3,867	3,886	3,895	3,878	4,037	4,049	2,178	2,168	2,159

¹⁹ Count on CONCRETE

- Published July 2022 (v3.2)
- Region Specific Mixtures For:
 - 6 Conventional Concrete Mixtures &
 - 3 Lightweight Concrete Mixtures

EPD Software Tools

climate earth.

- EPDs developed utilizing pre-verified EPD software becoming more prevalent.
 - Athena
 - Climate Earth
 - GCCA / Quantis
 - One-Click LCA

Athena Sustainable Materials Institute

<mark>Ca/Quantis</mark>

Reproducibility and Alignment of LCA Models

- Concrete PCR v2 requires <u>verification</u> and <u>validity</u> of an EPD
- Two (of five) conditions state:
 - EPD calculations by software systems should be verified using similar procedures as verifying and EPD.
 - When EPDs are aligned to an industry average, there should be consistency of results between product specific EPDs and industry average.
 - Use same LCA software version and background data, or
 - <u>test representative samples of the regionally specific industry average benchmark data and</u> <u>include report of the maximum percent difference.</u>

Reproducibility and Alignment of LCA Models

Appendix A: Summary of Reproducibility Results

Results of alignment for the NRMCA Eastern Region Benchmark.

April 2021

Impact category	ABB	Athena	Climate Earth	Unit	Results		Difference
		Method Used	Method Used		Athena	Climate Earth	
Global warming	GWP	TRACI 2.1 V1.02	TRACI 2.1 v 1.04	kg CO2 eq	202.80	201.02	-0.88%
Ozone depletion	ODP	TRACI 2.1 V1.02	TRACI 2.1 v 1.04	kg CFC-11 eq	6.18E-06	5.98E-06	-3.28%
Eutrophication	EP	TRACI 2.1 V1.02	TRACI 2.1 v 1.04	kg N eq	0.29	0.2799	-2.79%
Acidification	AP	TRACI 2.1 V1.02	TRACI 2.1 v 1.04	kg SO2 eq	0.74	0.7245	-2.17%
Smog	SFP	TRACI 2.1 V1.02	TRACI 2.1 v 1.04	kg O3 eq	15.20	14.959	-1.57%

EPD Misunderstandings, Misconceptions, and Misuses and Other Considerations

- Comparing EPDs across categories is tempting but improper.
- Life-cycle inventory data quality is critical for accurate analysis and EPD results.
- EPDs can lead to a "how low can we go" mentality, unintentionally affecting other properties.
- There is more to environmental stewardship than green house gas emissions.
- Producer-contractor collaboration may not be fully realized when only considering EPDs.
- Whole pavement EPD would provide for better decision making.
- Individual EPDs do not account for uncertainty, but a collection of within category EPDs can.
- There are costs that could potentially inhibit some producers from bidding on projects.

Concrete Materials

Beyond EPDs

Strategies BEYOND the Embodied Footprint

- Prioritizing means reducing our embodied carbon in cement and in concrete right now.
- The industry has embraced EPDs to benchmark and measure progress.
- <u>The industry has made huge strides already... optimizing mixtures (PEM), reducing</u> <u>cement content, SCMs, PLC, ternary blends, etc.</u>

• However... embodied carbon is only a PORTION of the carbon footprint.

How Concrete Properties Can Lower Use Phase CO₂

• Durability and Resilience

- Concrete's durability reduces future rehabilitation and reconstruction activities.
- Concrete's strength and resiliency allows it to better withstand natural disasters and their aftermath.

Improved Fuel Efficiency

 Fuel consumption of trucks on concrete is improved because concrete pavements are stiffer and stay smoother longer.

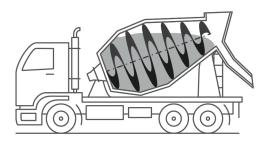
Highly Reflective

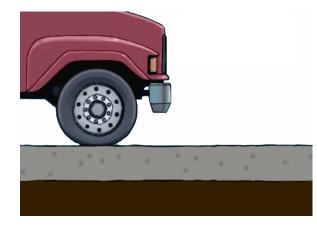
Concrete's light color lowers lighting requirements and UHI impacts; and increases Radiative Forcing that can offset 20% to 40+% of concrete CO₂ used to make the pavement (dependent on thickness)

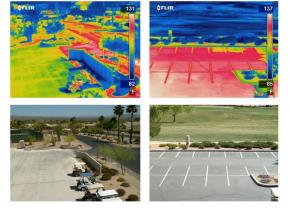
Increased Carbonation

- Re-carbonation absorbs ~10-11% of the CO_2 emitted in the A1-A3 phase and 25% of the total potential CO_2 that could be sequestrated.

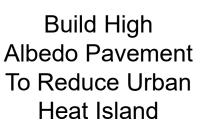
Resilience and Sustainability: Not having to rebuild after natural disasters saves CO₂


I-10 South of Beaumont, TX During Hurricane Harvey 2017 Source: Logan Wheat




Combining Methods to Decarbonize Pavements

Use Low Carbon & Performance Based Materials



Build & Maintain Smooth Pavements For Better Fuel Efficiency

Build Low Deflection Pavements For Better Fuel Efficiency

Plus Others...

DURABLE, SUSTAINABLE, CONCRETE

Infrastructure Decision Making: Considering Sustainability and Resilience

Planning/Goals

Use scoring systems (i.e., INVEST) to evaluate a project's potential environmental impact and set specific sustainability goals.

Design

Use whole pavement, full life cycle to understand a project's cradleto-grave cost and environmental impacts and select designs with the lowest impacts.

$\mathbf{\cdot \bullet \cdot}$

Procurement

Use environmental product declarations (EPDs) to set benchmarks and procure materials that meet sustainability goals.

Operation

Use life cycle cost and environmental modeling for asset management treatment optimization and selection. Network analyses will provide the largest CO₂ reductions.

Summary & Key Take-Aways

- The cement and concrete industries worldwide are committed to combat climate change, but we cannot do it ourselves
 - We need support from government, agencies, designers, engineers and all groups throughout the value chain.
- There are a variety of levers in-use and immediately available to lower concrete's CO₂ emissions
 - Portland Limestone Cement (Type 1L), Supplementary Cementitious Materials (SCMs), Alternative & Blended Cements / Clinkers, and Aggregate Optimization are just some examples.
 - The industry seeks assistance and leadership from the public sector with implementing these levers.
- The emissions of the pavement system are the most important
 - Cement and concrete are not the end products the concrete pavement is the end-product so whole pavement LCA is appropriate.
 - Eliminating "over-design," better pavement management, and selection of where to use concrete because of its inherent properties (i.e., stiffness and maintaining long-term smoothness) will lower the network CO₂.
- Results from a full life cycle perspective should drive decisions
 - Concrete's strength, durability, and resilience lower the operational and use phase impacts.
 - Models are available now to assess use phase impacts and account for uncertainty.

Thank You

Brian Killingsworth, P.E. NRMCA bkillingsworth@nrmca.org

